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This paper establishes the conditions under which rational billiards, i.e., billiards moving within po-
lygons whose vertex angles are all rational multiples of 7, exhibit a chaos that is empirically indistin-
guishable from that of systems traditionally called chaotic. Specifically, we show empirically that these
systems can have positive Liapunov number, positive metric entropy, and positive algorithmic complexi-
ty. Although our results appear to contradict rigorous mathematical assertions precluding chaos in ra-
tional billiards, such is not the case. In a real sense, rational billiards emphasize the quite practical,
physical distinction which exists between continuum and finite mathematics.

PACS number(s): 05.45.+b, 02.60.Cb

I. INTRODUCTION

Chaos is assured in the “diamond” billiard of Fig. 1(a)
because of its dispersing boundaries. Chaos continues to
occur in the stadium billiard of Fig. 1(b), despite the pres-
ence of only neutral and focusing boundaries, because or-
bits converge toward its separated focal points following
which they diverge. Chaos is not to be expected in the
polygonal billiard of Fig. 1l(c) because its neutral,
straight-line segments neither focus nor defocus orbits.
These intuitive remarks have a rigorous foundation. The
billiards of Figs. 1(a) and 1(b) are known to have positive
Liapunov number, positive metric entropy, and positive
algorithmic complexity, whereas rational billiards—
polygonal billiards whose vertex angles are all rational
multiples of w—have null Liapunov numbers, null metric
entropy, null algorithmic complexity, plus an isolating in-
tegral [1], which restricts system motion on the energy
surface. Consequently, rational billiards have historically
been categorized as almost integrable [1], pseudointegr-
able [2], and algorithmically integrable [3]. With these
facts in mind, the reader may find it unsettling to notice
the striking similarity between the two surfaces of section
shown in Fig. 2, one of which corresponds to the chaotic
stadium billiard and the other to an “integrable,” mul-
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FIG. 1. A billiard moving within the “diamond” shape pic-
tured in (a) above exhibits chaotic motion, as does a billiard
moving in the stadium boundary shown in (b). However, a bil-
liard moving within the octagon drawn in (c) is presumed to be
ordered and ““integrable” in character.
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tisided rational billiard. Moreover, the orbital similarity
does not end here. Select any orbit in the stadium and
then circumscribe about the stadium a rational polygon
[4], whose finite number of sides are tangent to the stadi-
um where sequential orbital boundary collisions occur.
This construction makes it apparent that the chaotic sta-
dium billiard and an integrable rational billiard can share
the same orbit for as long as one pleases. Surely it is dis-
turbing, if not contradictory, for supposedly integrable
and chaotic systems to exhibit such similar behavior. But
is this a contradiction easily dismissed by trivial argu-
ments or must we look deeper? As we shall show, these
issues can be resolved only by recognizing that the true
character of rational billiards has for decades been ob-
scured by the perfections of pure mathematics. This pa-
per seeks to expose the character of rational billiards
which emerges when the tenets of continuum mathemat-
ics are abandoned.

In Sec. II, we review the background required to ap-
preciate the true character of rational billiards, including
the fact that they possess closed-form, analytic solutions.
In Sec. III, we present numerical results which expose the
fact that rational billiards can exhibit an exponentially

FIG. 2. Shown here are two surfaces of section, one for a bil-
liard moving within a stadium boundary and one for a billiard
moving within a multisided polygonal boundary. One system is
chaotic the other presumed not. Nonetheless, the similarity is
striking. Here, as throughout this paper, V. is tangential com-
ponent of billiard velocity at boundary collision and q is dis-
tance to the boundary collision point measured along the
boundary from a fixed reference on the boundary. (The stadium
billiard is on the left.)
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sensitive dependence of final state upon initial state
despite having the null Liapunov number, entropy, and
algorithmic complexity dictated by continuum
mathematics. Section IV summarizes our results and
discusses the implications they have for physics and
mathematics.

II. RATIONAL BILLIARDS

Much of our intuitive understanding regarding the
behavior of rational billiards derives from the following
three facts: (1) each billiard orbit in position space can be
“unfolded” to form a straight line on a plane; (2) each po-
lygon tiles [5] some flat surface under reflection; and (3)
some contiguous set of polygons tile the same flat surface
under translation. Indeed, these facts provide a route for
obtaining an analytic solution for rational billiard
motion. Meaning is given to these assertions by examin-
ing Fig. 3 for the simple case of a billiard moving in a
unit square. Here, an orbit is initiated at the lower left in
square 1. Upon striking the boundary, the square is
reflected rather than the orbit. This process is repeated
at each boundary collision, yielding the dashed line
shown. One now observes that the “fundamental square”
composed of squares 1, 2, 3, and 4 tiles the plane under
translation. These geometric considerations now permit
us to write down an analytic expression for the straight-
line orbit and then invoke translational periodicity to ob-
tain X =(X,+ Vo, ?) (mod 2) and Y=(Y,+ ¥V, t) (mod 2)
as the equations for the billiard orbit in the “fundamental
square”” shown in Fig. 4. Simple geometry [3] then allows
us to write down an analytic, closed-form expression for
the billiard orbit in square 1. For that small set of po-
lygons which tile the plane under reflection, i.e., those
whose interior angles all have the form w/n, the pro-
cedures used above for the square are directly applicable.
However, the situation is more complicated for polygons

2 3 2 3 | x
P’
.
/'
1 4 1 A 4
d clc dd,}
d clc dld
2 | 7| 2 3
a AD/D ala
a 7 blb aja
“ 4 4 1 a
d clc d|d

FIG. 3. A billiard orbit in the square is started in the lower
left square. At each boundary collision, a square is reflected
rather than the orbit. In this way, the billiard orbit is converted
into the straight line shown. Indeed all orbits in the square can
be represented as straight lines on the plane. This is possible be-
cause the square tiles the plane under reflection. The task of ob-
taining an analytic expression for a billiard orbit in the square is
facilitated because squares 1, 2, 3, and 4 tile the plane under
translation.
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FIG. 4. When all the orbital segments lying in squares 1, 2, 3,
and 4 are translated back onto a single 1, 2, 3, and 4 square, the
billiard orbit takes the form seen in this figure. Reflecting the
orbit back onto a single square now involves only a simple bit of
geometry.

having even one interior angle of the form m#/n, m > 1.
Let us illustrate these complications by considering a par-
ticularly simple case—the 60°-120° or [7/3,27/3]
rhombus shown in Fig. 5(a).

In Fig. 5, we begin to tile a plane by reflecting rhombus
1 into rhombus 2 across side ab. Rhombus 2 is then
reflected into rhombus 3 as shown. At first glance, it
would appear that reflecting rhombus 3 across its side ab
would yield rhombus 1; however, such is not the case.
Upon reflection, the vertices of rhombus 3 do not match
those of rhombus 1. This is our first complication; we
must abandon the notion of tiling a plane. Nonetheless,
we can still proceed by rotating rhombus 3 through 360°
into rhombus 4 lying directly under 3. We may now re-
turn to reflecting about the 27 /3 vertex obtaining rhombi
5 and 6. Rotating rhombus 6 through 360° finally returns
us precisely to thombus 1. Note that top joins bottom in
Fig. 5(d) only at the “gap” represented by the thick line
where rhombus 3 connects to 4 and rhombus 6 connects
to 1. By unfolding the “double” hexagon of Fig. 5 (d), we

FIG. 5. This ﬁgure pictures the beginning of the process
which yields the almost everywhere-flat surface upon which the
straight-line orbit for a billiard in the 60—120° rhombus may be
drawn. Rhombus 1 in (a) is reflected to yield rhombus 2 in (b)
and then rhombus 3 in (c). Rhombus 3 is then rotated to obtain
rhombus 4 lying directly under 3. Rhombus 4 is reflected to ob-
tain rhombus 5 and thence rhombus 6. The heavy dark line is
the “cut” through which rhombus 3 joins rhombus 4 and
rhombus 6 joins rhombus 1. If the “double” hexagon of (d) is
opened up, one obtains the pleated surface seen in (e). This sur-
face is flat except for the saddle point at its center which carries
singular negative curvature.
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obtain Fig. 5(e) which exposes a monkey saddle (two val-
leys for his legs and one valley for his tail) which is flat
everywhere except for its central, isolated saddle point
which bears singular negative curvature and has the char-
acter of a hyperbolic fixed point in the flow [2]. The six
connected rhombi of Fig. 5(d), or those in the equivalent
Fig. 5(e), form the fundamental set which, under transla-
tion, can be used to periodically tile the almost-flat sur-
face upon which straight-line billiard orbits may be
drawn. Indeed, translation of the ‘“double” hexagon in
Fig. 5(d) yields the everywhere-flat surface (except for the
isolated saddle points located at the ends of each thick
line segment) shown in Fig. 6, where the flat surface is a
“double” plane joined at the upper and lower edges of the
narrow “gaps’ denoted by the thick line segments—as in
Fig. 5(d). As required, this flat surface is tiled under
reflection by the rhombus and under translation by the
double hexagon. For later reference, we mention that the
almost-flat surface periodically tiled under translation by
the pleated array of rhombi forming the saddle in Fig.
5(e) is straightforward to construct, but more difficult to
draw.

Geometrically, we may draw an orbit for the rhombus
billiard as a straight line on this flat surface and regain
the orbit in the rhombus by repeated reflections, just as in
the case of the square. Analytically, however, we en-
counter a second complication. A glance at the straight-
line billiard orbit drawn in Fig. 5 immediately reveals the
problem. Please note that the zigzag look of this straight
line geodesic arises because it lies on two connected
planes rather than just one. Here, it is visually apparent
that the correct analytic expression for the full rhombus
orbit is not simply X =X+ V1, Y=Y+ V1, as it was
for the square. Nonetheless, once the X-Y axes are
chosen for each plane, the standard equation for
straight-line segments can be used on each plane. Thus,
to keep proper track of the complete straight-line
rhombus orbit, we must maintain a record of the sequen-
tial “planes” upon which each straight-line segment lies,
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FIG. 6. The almost everywhere flat surface upon which the
straight line 60°-120° rhombus orbits may be drawn. It is ob-
tained by translating the “double” hexagon of Fig. 5(d). This
surface consists of two planes joined at the upper and lower
edges of each heavy line. Singular points of negative curvature
exist at the ends of each heavy line. The zigzag curve is actually
a straight line geodesic on this flat surface. The continuous seg-
ments lie on the “top” plane while the dotted segments are on
the “bottom.”
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or better, develop an analytic expression for the transi-
tion of the orbit from plane to plane. For the case at
hand, the 60°-120° rhombus, Eckhardt, Ford, and Vival-
di [3] established that the plane-to-plane transitions could
be encoded as a closed-form (mod 3) function whose de-
tailed form need not concern us here. Once this fact was
established, gaining a closed-form analytic solution for
rhombus orbits was no more difficult than for the square.
Finally, the closed-form solution thus derived was shown
to logarithmically compress the information in the
rhombus orbits, just as does the solution for the square.

In the general case, we can construct the everywhere-
flat surface (except at isolated saddle points which add a
hyperbolic character to the flow) simply by continuing
indefinitely and in all directions the process of “rotating”
each polygon about each vertex until each time the po-
lygon returns to its initial configuration. It helps to un-
derstand the construction envisioned here if, for the sim-
plest case, one cuts out a large number of paper rhombi
and continues the saddle-point figure of Fig. 5(e) by
sequentially scotch taping six rhombi about each vertex.
This “hands on” construction quickly reveals that the
isolated saddle points embedded in this almost-flat sur-
face provide it with average negative curvature. In any
event, once the reflection process is completed for an ar-
bitrary rational polygon, one has an almost everywhere-
flat surface which is tiled under reflection by the given
polygon and under translation by some finite set of the
polygons [1-3]. As before, each saddle point is the junc-
tion of a number of planes (27 regions). Again, one must
determine a closed-form expression for the transition of
the straight-line polygon billiard orbit from one plane to
the next. Although an explicit expression for these tran-
sitions has not yet been derived for an arbitrary polygon,
the derivation for any specific polygon requires only that
we track the billiard orbits and keep a record of where
they go. However, since we have no need of exact solu-
tions in this paper, we shall not pursue this issue further
here.

Much more important for us is the fact that, in gen-
eral, the orbits of rational billiards lie on almost
everywhere-flat surfaces which, nonetheless, have average
negative curvature, a widely accepted signature of chaos.
Moreover, the average density of the isolated, singular
points bearing the negative curvature grows as the num-
ber of polygonal sides increases. Now, average negative
curvature connotes rapid separation of initially parallel,
close orbit pairs. But how can polygons with neutral
boundaries disperse parallel orbits? Of course, the neu-
tral boundaries cannot, but the singular vertices (mw/n,
m > 1) can. A particularly striking example is shown in
Fig. 7 which pictures the dispersion of two incoming,
parallel orbits by a 37/2 vertex. This figure makes it
quite clear that the future history of a polygonal orbit
crucially depends on the side it takes in passing a singular
vertex. However, when a polygonal boundary has only a
few such vertices, dispersion might be expected to play
only a relatively minor role in the overall motion. But as
the number of vertices increases, dispersive effects may
become hard to ignore. In the following section, we veri-
fy that this is indeed the case.
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FIG. 7. Three close parallel orbit pairs incident on the sides
of a singular 37 /2 vertex. At (a) and (b) both members of each
pair strike the boundary on the same side of the vertex and
emerge parallel after the collision, while at (c) the two members
of the pair fall upon opposite sides of the vertex and emerge an-
tiparallel. This is an especially striking example of orbital
dispersion due to singular vertices.

III. NUMERICAL RESULTS

The surfaces of section shown in Fig. 2 certainly reveal
the erratic character of orbits for the stadium and the as-
sociated circumscribed, multisided polygon. However,
surfaces of section are not a strong test for chaos.
Indeed, they do not distinguish chaos from simple ergodi-
city nor do they permit one to rule out the presence of a
subtle order. For example, in Fig. 8(a) we show surface-
of-section points generated by a single stadium orbit. To
expose its hidden order, we used the technique described
in our opening section to circumscribe a rational polygon
about this stadium such that the polygon and the stadium
share the orbit generating the points shown in Fig. 8(a).
Recall now [3] that billiard motion in a rational polygon
has only a finite number of velocities, and, because the
stadium and polygon here share the same orbital seg-
ment, this means that there can be only a finite number of
values for V_ in the stadium surface of section shown in
Fig. 8(a). Hence, we analytically computed these V.
values [1], and in the comparison Fig. 8(b), we reveal that
all the stadium surface-of-section points in Fig. 8(a) do, in
fact, lie on predictable horizontal V_ lines and nowhere
else. Thus, we have exposed a hidden order in the chaot-
ic motion of a stadium. However, this order is detectable
only over a short-time interval. A polygon can share an
orbit with a stadium over an extended period only if the
polygon has an enormous number of sides. The corre-
sponding set of V_ values would then be so dense they
would appear to form a continuum. Having now verified
that a surface of section is not a trustworthy test for
chaos, let us turn to one that is.

Liapunov number is widely regarded as the definitive
test for chaos since, when positive, it implies an exponen-
tial sensitivity of the final state to variation in the initial
state. Thus, putting caution aside, we elected to compute
the Liapunov number numerically for a sequence of po-
lygons having an increasing number of sides, all cir-
cumscribed about the same stadium. The results are
shown in Fig. 9. For side number N = 1000, the empiri-
cal Liapunov number for the polygons takes on a con-
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FIG. 8. The surface-of-section points for a single stadium or-
bit are shown on the left. Over the time interval considered this
stadium orbit is the same as that of a judiciously chosen, cir-
cumscribed rational polygon, which latter has an isolating con-
stant of the motion that limits the number of allowed V', values.
At the right, it is shown that the stadium surface of section
points lie precisely on these allowed V. lines and nowhere else.
In short, there is a hidden order in the short-term stadium
motion.

stant value equal to that of the stadium. The numerical
procedures used here closely followed those presented by
Benettin and Strelcyn [6]. Specifically, each member of a
Liapunov orbit pair—consisting of a reference and a
comparison orbit—was started at the same spatial posi-
tion with initial velocity directions separated by an angu-
lar distance =103 rad. Each member of the orbit pair
was then permitted to evolve with time. Periodically,
however, the state of the comparison orbit was reinitial-
ized. Specifically, let d, be the magnitude of the initial
phase-space separation distance between comparison and
reference orbits, and let D be the time-evolved vector
phase-space distance at the moment of reinitialization.
The comparison state is then moved along the vector D
until it reaches the point dyD/|D|. The magnitude of
separation distance between comparison and reference
orbit is thus returned to its initial value but its direction
is not necessarily the same. We then compute the
Liapunov number A using the Benettin-Strelcyn formula
A=(1/n€e)3'_In(|D;|/d,), where € is the reinitializa-
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FIG. 9. Liapunov number of polygons circumscribed about
the same stadium. Each point in the figure represents the
Liapunov number averaged over numerous orbit pairs at each
value N of side number. The polygonal values of the Liapunov
number stabilize and take on the Liapunov number of the stadi-
um at about side number N = 1000.
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tion period and n is the number of such periods. The
Liapunov numbers we computed for the stadium were
the same as those reported by Benettin and Strelcyn.
Each point plotted in Fig. 9 is an average of the Liapunov
numbers computed for numerous orbit pairs at each N
value. Each orbit pair was integrated until it gave a sta-
tionary value for Liapunov number. The fact that the po-
lygonal Liapunov numbers become equal to that of the
stadium should not be permitted to overshadow the fact
that polygons having only a few sides exhibit a positive,
albeit small, Liapunov number.

At this point, one is tempted to conjecture that the re-
sults shown in Fig. 9 are merely a consequence of our
considering only polygons circumscribed about a chaotic
system—here the stadium. Put simply, as the polygonal
shape approaches that of the stadium, so presumably
does its orbital behavior. Bearing this thought in mind,
let us inspect Fig. 10 which presents a plot of numerically
computed Liapunov number versus the side number N
for polygons circumscribed about an integrable
system —the circle. Here, the Liapunov number achieves
a constant value for N =200, and moreover this constant
value is not the same as that shown in Fig. 9. To corro-
borate this Liapunov result, in Fig. 11 we show the linear
growth of separation distance between two circle orbits
pictured just above the exponential separation of two or-
bits in a circumscribed polygon. Finally, recall that L,
and, hence, ¥V, is a constant of the mction for the circle
billiard; therefore, each orbit for the circle must lie on a
single horizontal line in a surface of section plot. Again
bearing this thought in mind, glance at Fig. 12 showing a
composite of surfaces of section for a circumscribed po-
lygonal billiard. In Fig. 12(a), surface-of-section points
spread rapidly along the constant V_ ‘“direction” but
more slowly along the direction perpendicular to con-
stant V. The continuing spread in V_ values is shown in
Figs. 12(b) and 12(c). This behavior is reminiscent of that
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FIG. 10. Liapunov number for polygons circumscribed about
the same circle. A positive Liapunov number is obtained
despite the fact that polygonal shape approaches more and
more closely to that of the integrable circle as polygonal side
number increases. Polygonal Liapunov number achieves and
maintains a constant value distinct from that seen in Fig. 9,
moreover, saturation occurs at a much lower value of side num-
ber.
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FIG. 11. This figure compares the linear growth of separa-
tion distance for close orbit pairs in the circle with the exponen-
tial separation of close orbit pairs in a circumscribed polygon.

exhibited by Chirikov’s kicked rotor [7]. In closing this
paragraph, we can but note that, while a circumscribed
billiard is not ignorant of the behavior of the billiard
about which it is circumscribed, it nonetheless superim-
poses its own “brand” of chaos. Specifically, the polygo-
nal boundary contains singular points whereas the en-
closed smooth boundary does not.

Let us now begin to reconcile the rigorously derived
null Liapunov number, entropy, and algorithmic com-
plexity of rational billiards with the numerical results of
Figs. 9-12.  In Fig. 13, we compare our analytical esti-
mate with empirical data regarding the number of polyg-
onal sides required to obtain a meaningful (nonzero)
Liapunov number versus initial velocity angular separa-
tion a. The curve in Fig. 13 represents our crude esti-

FIG. 12. Three surfaces of section in the (¥ ,,q) plane for a
polygon circumscribed about a circle. Here, the total orbital in-
tegration time increases from (a) to (b) to (c), and one notes that
the spread of polygonal points in the vertical V. direction is in-
creasing. For comparison, recall that ¥, is a constant of the
motion for the circle billiard.
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FIG. 13. The smooth curve is a plot of N= C /V'a, our rough
estimate of when Liapunov orbit pairs will clearly perceive the
average negative curvature of the almost everywhere-flat surface
upon which the polygonal billiard orbits move. Here, of course,
N denotes the number of polygonal sides and a is the initial an-
gle between velocity directions for a Liapunov pair. The dots in
the figure are the empirical values of N, for given a, at which a
stable, nonzero value of Liapunov number was first observed.

" 1.0x10°2

mate, N=C /V a, while the dots are numerically com-
puted data points. The meaning of this figure reads as
follows. For a given N, an a value must be large enough
for the Liapunov pair to be fully affected by the negative
curvature of the almost everywhere-flat surface. As the
value of a decreases toward zero, Liapunov orbit pairs in-
creasingly are affected by more and more of only the flat
surface, and for a=O0 report back the null Liapunov
number required by continuum mathematics. However,
if one fixes the value of a >0, no matter how small, there
is nonetheless a value of N beyond which a positive value
of the Liapunov number will be obtained. In this regard,
it is to be emphasized that this empirical Liapunov num-
ber for rational polygons achieves a constant value (satu-
rates) with time, with a, and with NN as is shown below.

Figure 14 demonstrates that Liapunov number
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FIG. 14. This figure is intended to provide empirical evi-
dence that, once a steady value of the Liapunov number is
achieved by an orbital pair, this constant value is maintained
throughout all time. This graph is for a polygon having 22 sides
using a=10"2.
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FIG. 15. This figure reveals that a Liapunov number satu-
rates with increasing a at fixed side number N. It corroborates
the notion that, once a permits a Liapunov pair to perceive the
average negative curvature of the almost everywhere-flat sur-
face, the Liapunov number stabilizes and does not increase
indefinitely with a.

achieves and maintains a constant value over quite long-
time intervals. The small value of the Liapunov number
observed here was obtained for a polygon having 22 sides
using «=10"3. This result should by now come as no
surprise. If a is large enough for an orbit pair to be
affected by the negative curvature of the almost-flat sur-
face at time zero, then the homogeneity of that surface
will permit the pair to be affected by that negative curva-
ture forever. Figure 15 illustrates the saturation of
Liapunov number with a while Fig. 16 presents a more
complete picture of saturation with N than given by the
earlier Fig. 9.

Saturation with N at fixed a is a bit surprising, espe-
cially in view of the widely held notion that the similarity
of boundary implies similarity of motion. It therefore
deserves an explanation. As the polygonal boundary
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FIG. 16. This graph is a continuation of Fig. 9 and plots the
Liapunov number versus N for polygons circumscribed about a
stadium for three values of a. This figure exposes the saturation
of the Liapunov number with both N and a.
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grows close to the enclosed curve, the angle between ad-
jacent sides tends to 7. In short, the dispersion due to a
single vertex tends to zero. However, as N increases at
fixed a, the separation between the two orbits of a
Liapunov pair spans not one but many vertices. Simple
geometry then shows that the product of increasing N
and decreasing ‘‘scattering” per vertex is a constant.
Consequently, the same value of Liapunov number is ob-
served no matter how large the finite value of N.

Thus far, we have emphasized Liapunov number and
not metric entropy or algorithmic complexity. We recti-
fy this omission in the following section.

IV. CONCLUSIONS

Continuum mathematics quite correctly asserts that all
rational billiards have null Liapunov number, entropy,
and algorithmic complexity. However, these assertions
are based on assumptions that we frequently overlook or
ignore, assumptions we may not wish to accept or cannot
accept. All three of these notions [8] invoke the limit
t— oo, and all require that system orbits be known with
infinite precision. In addition, the Liapunov number re-
quires arbitrarily close initial orbit pairs; entropy requires
phase-space partitions having arbitrarily small cell size;
and algorithmic complexity requires that N¢ be distin-
guishable from N, no matter how close € is to 1.

The common thread linking the above assumptions is
infinite accuracy. Invoking the postulate that nothing, in
principle, prevents the measurement of any quantity to
arbitrarily high precision, physical scientists adopt the
mathematical notion of infinite accuracy without demur,
notwithstanding the fact that all laboratory observations
and computer calculations have finite accuracy. Howev-
er, the physical data have, in fact, so frequently fit the
continuum theory that the scientist feels no compelling
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need to incorporate the subtleties of finite mathematics.

However, rational billiards offer at least a small reason
to rethink this position, for if we have only finite accura-
cy, no matter how high, there exist rational billiards
which empirically possess positive Liapunov number, en-
tropy, and algorithmic complexity. The reasons for the
positive Liapunov number have already been given.
These systems have positive entropy because the cell size
cannot go to zero and because the positive Liapunov
number ensures that the average information gained per
measurement is not zero. Turning now to algorithmic
complexity, let us seek to compute sequential orbital
points all having a finite accuracy less than the maximum
available. For sufficiently large N, each time this orbit
reaches the boundary, it strikes a vertex ‘“head on.” In
order to resolve the crisis, we continue the orbit to the
right or left of the given vertex as the center of the orbit’s
“error bar” lies to the right or left of the vertex. For long
orbital segments, the information put in to compute the
straight-line segments grows like log,y¢ but the informa-
tion in the binary decisions required to resolve the
sequential crises grows like ¢z. The full orbit, therefore,
has positive complexity. There is an analogy here to a
Galton board. If both ball and pins are mathematical
points, the ball descends rarely encountering a pin. How-
ever, if the ball has a finite diameter and the pins are suit-
ably numerous, the path of the ball is a random walk. In
summary, if only finite precision is available (no matter
how high), the chaos displayed by rational billiards is in-
distinguishable from that exhibited by systems tradition-
ally termed chaotic.

Using arguments based on continuum mathematics,
mathematician and physicist alike have concluded that
rational billiards are integrable—almost integrable, pseu-
dointegrable, or algorithmically integrable. However, by
restricting ourselves to finite mathematics, we have
shown in this paper that the overwhelming majority of
rational billiards are, in fact, chaotic [9].
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